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Abstract. Reliability of communications is of vital importance in military applications. 
Constellations are connecting coded words at different ends of the communication channel that 
indicate the correctness of the transmitted message. In this paper, we compare the influence of the 
selected nonlinearity in the transmit amplifier on the constellation diagrams in radio frequency (RF) 
geostationary satellite downlink and bit-error-rate (BER). Two cases were analyzed: negligible and 
severe noise in the communication channel. Considering the cubic, hyperbolic tangent, Saleh, 
Ghorbani, and Raap models, it is shown that the Raap and Saleh models can be used for the lowest 
BERs when the noise is negligible. In case of severe noise, it is best to use the Raap model from the 
set of nonlinearities considered. The ANOVA-test showed that there is a dependence between the 
Raap and Saleh models in the presence of negligible noise, but not in the presence of severe noise. 
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1. Introduction

The importance of satellite communications for maritime and navy applications is well-
known and increasing. If a transmitted message is altered beyond reliable identification, 
there could be significant consequences for warfare. Hence, communications reliability 
studies are more important than ever. Although some problems in wireless 
communications were considered in (Kurniawati et al., 2023; Pamukti, Wijayanto, and 
Liaw, 2023), and path losses in (Lukman et al., 2022), problems considered in this paper 
were not investigated in these references. The satellite component plays a fundamental role 
in Universal Mobile Telecommunication Systems (UMTS) (Janaaththanan, 2008). 

High power amplifiers (HPAs), which are highly sensitive to nonlinearities, were the 
focus of Lakhwal, Pal, and Kumar (2012). Because of these nonlinear responses, signal 
distortions were also amplified. The paper presents an adaptive method for linearizing the 
HPA response using a polynomial. There isn’t comparative analysis of the nonlinearities’ 
effects studied yet. 

A framework for RF systems modeling is described in (Arabi and Ali, 2008). Simulink 
was used and Quadrature Amplitude Modulation (QAM) was considered. However, only 
one nonlinearity was considered. On the contrary, the subject of this paper is a comparison 
of various nonlinearities. Bawa, Pal, and Gupta (2013) concluded that polynomials up to 
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the 5th order is useful since higher orders have negligible effects.  It can be seen that the 
most popular nonlinearity is the polynomial. Current trends include multicarrier 
waveforms and non-symmetrical spectral shaping of subchannels (Jošilo et al., 2014), 
exploration of RF distortions massive MIMO (Multi-Input, Multi-Output) Systems in 
millimeter-wave (Khansefid et al., 2016), digital precompensation for multicarrier satellite 
communications (Kelly et al., 2015), Ku/Ka band satellite services (SES, 2017), and MIMO 
satellite communications (Ramamurthy, 2018) or novel materials for antenna designs. 
Wang et al., (2022), (Gupta et al., 2019) focus more on hardware for HPA.   Some aspects of 
nonlinearities in HPAs are also considered in the works of Ssimbwa et al. (2022) and 
Mukherjee, Lajnef, and Krikidis (2020). The importance of this research is emphasized by 
references on their compensation, e.g. (Maltsev et al., 2022). All of the above topics could 
be addressed separately.  

The contributions of the paper are: 
- pointing out an example linking marine electrical engineering education with the 

practice of readers working in parallel with their studies, 

- linking work processes with theory in order to the improve theoretical knowledge 

of the operator, and help readers to combine study and work, 

- simulation in Matlab/Simulink, linked to a problem from practice to complete the 

education and finish the appropriate level of training, 

- comparative analysis of the influence of the different models (cubic, hyperbolic 

tangent, Saleh, Ghorbani, Raap) on the constellations. 

In this paper, QAM is considered for satellite communications. The paper is organized 
as follows. In section two, the considered model of satellite downlink is presented. In 
section three, nonlinearities in HPA are defined. The simulation results are presented in the 
fourth section. The last section contains the conclusions. 
 
2. Considered System and Components 

 The considered system consists of three parts: the satellite’s downlink transmitter, the 
downlink path (corresponding to the influence of conditions in the transmitting medium, 
i.e. atmospheric conditions), and the ground station downlink receiver. Ideally, the receiver 
should read the signal without error. Constellation diagrams show the dispersion of the 
received signals. The downlink transmitter consists of: QAM modulator, transmit filter (in 
this case raised cosine transmit filter), HPA, and antenna gain. HPA introduces nonlinearity 
in real cases. One method to linearize the power amplifier (PA) is to introduce predistortion 
into the modeling (Raich, 2004). Ideal PA can be with and without memory effects, but 
wideband signals also tend to introduce memory effects. Memory effects can also be caused 
by electrical or/and electrothermal sources. Hence, HPAs are modeled with nonlinear 
functions to compensate for memory effects, and nonlinearity is used instead of memory 
effects (Šuško, 2013). In memoryless systems, the output is a function of the input at the 
current time, there are no energy-storing components, and the output is in phase with the 
input. Input-output (I/O) relationship should be frequency-independent. HPA is also 
modeled to compensate for system degradation due to amplifier nonlinearities, 
intermodulation effects, etc. Memoryless models are i.e. polynomial, Saleh, Ghorbani, or 
Rapp. The transfer function (TF) of the raised cosine filter can be expressed as square 
cosine. The inputs are the roll-off factor () and the cut-off frequency (1/Ts), as in equation 
(1): 
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Impulse response is given with equation (2): 
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 The polynomial models used in the Results section are cubic and hyperbolic tangent. 
In general, a finite order polynomial model fitted to the I/O measurements of an amplifier 
is defined as follows in equation (3): 
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, N is the order of the polynomial and L is the number of measured 
data. The cubic polynomial has components up to the 3rd order. The hyperbolic tangent has 
1st, 3rd, and 5th order variables (Bawa, Pal, and Gupta, 2013). The Saleh model (O'Droma et 
al., 2009) is considered as a standard. It equation (4) defines the AM/AM and AM/PM TFs 
as: 
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where r(t) is the modulated envelope and Pmax is the maximum saturation point of the 
amplifier. In the Ghorbani model (Sajedin and Ghorbani, 2014), the TFs are defined as 
equation (5): 
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where  4321 ,,, xxxx   are AM/AM parameters used to calculate amplitude gain for input signal 

A, and   4321 ,,, yyyy  AM/PM parameters for phase change computation. In the Raap model 

(KrishneGowda et al., 2016), the smoothness factor, p, and the output saturation level, A0, 
are used to calculate the amplitude gain for the input signal equation (6): 
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3. Results and Discussion 

 The simulation is performed for the following parameters: satellite altitude 35600 km, 
frequency 4 GHz, transmit antenna diameter 0.4 m, receive antenna diameter 0.4 m, phase 
noise 100 dBc / Hz. HPA nonlinearity is set to values of 30 dB for negligible, and 1 dB for 
severe. Phase noise is set to negligible (-100 dBc/Hz@100 Hz) and to severe (-48 
dBc/Hz@100 Hz). Severe noise is high enough to cause errors even without thermal noise 
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or other RF impairments. Figure 1 shows constellations for various analyzed nonlinearities. 
As can be seen, the figures on the right side of Figure 1 have higher amplitudes. Figure 1(a) 
shows 4.4 times magnification. Figure 1(b) shows around 7.7 times magnification. Figure 
1(c) shows magnification of around 5, Figure 1(d) 4.8, and Figure 1(e) around 5. The figures 
on the right side look more clustered, but it could be a visual effect due to magnification. As 
can be seen in Figure 1, the real constellation looks different from the ideal case, which is 
expected. However, a different model results in a different deviation from the center of the 
cluster, i.e. the ideal arrangement of the constellation. The important question to be further 
explored is how large interference can be that leads to false detection of the transmitted 
signal. 
 Figure 2(a) shows the input/output characteristics of HPA for various nonlinearities. 
It can be seen that the HPA characteristic is linear for Saleh, slow exponential growth is 
exhibited by Gharboani, and other models result in saturation (asymptotic behavior).  

  
(a) 

  
(b) 

  
(c) 
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(d) 

  

(e) 

Figure 1 (continued) Nonlinearities in HPA: (d) hyperbolic tangent - constellation before 
(left) and after (right) HPA; and (e) Raap – constellation before (left) and after (right) HPA 

 
(a)       (b) 

Figure 2 I/O characteristic of HPA for a) the first scenario, b) the second simulation 
scenario 

 An example of BER for different models is shown in Figure 3 (a). Figure 3 (b) shows the 
difference between hyperbolic and Ghorbani, cubic and Ghorbani, and Raap and Ghorbani 
models. Noise is added to the simulation to show the changes in the presence of strong noise 
in the communication channel. For the following results, the simulation was performed 
with the following parameters: satellite altitude of 35600 km, frequency of 4 GHz, transmit 
antenna diameter of 0.4 m, receive antenna diameter of 0.4 m, noise temperature of 290 K, 
HPA backoff level 1 of dB, and phase noise of - 48 dBc / Hz. While the Saleh model can lead 
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to a linear O/I characteristic, other models are nonlinear. Figure 3(b) indicates that the 
Raap and Ghorbani models have differences in BER only when they are not in a steady state, 
e.g. at the beginning in the time domain. Moreover, it can be seen that the calculation of BER 
leads to high values at the beginning and to non-deterministic values for the rest of the time. 

  
(a) (b) 

Figure 3 (a) BER for different models; and (b) difference of BERs for different models 

Figure 4(a) shows the BERs in the case of severe noise in the communication channel 
for all five models considered. It can be seen that the Raap model has the lowest BER, while 
Saleh and Ghorbani have the highest BERs. Figure 4(b) confirms the conclusions of model 
quality based on BER and shows BER differences for the low and high noise scenarios in the 
communication channel. 

  
(a) (b) 

Figure 4 (a) BER for the case of severe noise in the communication channel; and (b) BER 
difference for the same models with negligible and severe noise in the communication 
channel 

Figure 5 shows the simulation results for the input/output difference for the low noise 
case. Figure 5(a) shows the absolute value of the difference for all considered nonlinearities 
in the enlarged part. Figure 5(b) shows the phase diagram of the difference, enlarged part. 
It can be seen that the Ghorbani and Saleh curves have the same values at the last time 
point. The Saleh and Raap curves overlapped in earlier time periods. The hyperbolic 
tangent nonlinearity-produced curve overlaps with the cubic curve. It can be seen that 
differences are greater in the case of negligible than in the case of severe noise. 
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(a) (b) 

Figure 5 I/O difference for negligible noise (a) absolute value; (b) phase 

Figure 6 shows the difference between the input and output signals in the case of 
severe noise. Figure 6(a) shows the absolute value of the difference signal. Figure 6(b) 
shows the phase of the difference (I/O) signal for all 10,000 points.  

 
 

(a) (b) 

Figure 6 Input/output difference signal for the case of severe noise: a) absolute value, b) 
phase 

 Figure 7 shows the difference between cases with negligible noise and those with 
severe noise for the same type of nonlinearity. For example, the blue line in Figure 7(a) 
shows the difference between the phases of the considered cases for cubic polynomial 
nonlinearity. Figure 7(b) shows the absolute value of the difference between cases. 
 To check for possible dependencies between the results of the models used, we 
performed an ANOVA analysis. This analysis provides the P-value, the probability that the 
F-ratio is as large or larger than the observed one. In addition, the mean square (MS), 
degrees of freedom (df), and sum of squares (SS). The critical value of F (Fcrit) is the value 
that represents the boundary between dependence and non-dependence between the data 
groups. The variation between groups accounts for the overall variation among each 
group's mean and the overall mean, while the variation within groups encompasses the 
total variation in individual values within each group and their respective group means. 
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(a) (b) 

Figure 7 Difference of I/O for two considered cases: (a) phase; (b) absolute value 

As shown in Table 1, based on F>Fcrtit, it can be concluded that there are no 
dependencies between all five models in the presence of negligible noise. In Table 2, it is 
evident that dependencies exist between the Saleh and Raap models under the condition of 
negligible noise. 

Table 1 Results of ANOVA analysis for negligible noise for all considered models 

Source of Variation SS Df MS F P-value Fcrit 

Between Groups 8.526003 4 2.131501 419.6638 0 2.373333 

Within Groups 32.20129 6340 0.005079    
Total 40.72729 6344         

Table 2 Results of ANOVA analysis for negligible noise for Saleh and Raap 

Source of Variation SS df MS F P-value Fcrit 

Between Groups 3.74E-05 1 3.74E-05 0.006367 0.936406 3.845128 
Within Groups 14.90038 2536 0.005876    
Total 14.90042 2537         

Results in Table 3 show that F>Fcrtit. Table 4 leads to the same conclusion that the data sets 
are not dependent on each other. 

Table 3 Results of ANOVA analysis for severe noise for all considered models 

Source of Variation SS Df MS F P-value Fcrit 

Between Groups 161,1764 4 40.29409 21130.53 0 2.373641 

Within Groups 9.915948 5200 0.001907    
Total 171.0923 5204         

Table 4 Results of ANOVA analysis for severe noise for Saleh and Raap 

Source of Variation SS Df MS F P-value Fcrit 

Between Groups 149.5105 1 149.5105 94969.92 0 3.844556 
Within Groups 4.729176 3004 0.001574    
Total 154.2397 3005         
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Table 5 Results of ANOVA analysis for severe and negligible noise for the Raap model 

Source of Variation SS df MS F P-value  Fcrit 

Between Groups 16.48115 1 16.48115 3699.667 0  3.845128 
Within Groups 11.29729 2536 0.004455     
Total 27.77844 2537          

Since F>Fcrtit, we can conclude that there is no correlation between severe and negligible 
noise in the case of the Raap model.  

As shown in Table 1, based on F>Fcrtit, it can be concluded that there are no 
dependencies between all five models in the presence of negligible noise. Table 2 shows that 
there are dependencies between Saleh and Raap when the noise is negligible. Table 3 shows 
that in the presence of severe noise, there are no dependencies for all models considered. 
Table 4 shows that there are no dependencies for Saleh and Raap in case of severe noise. 
Finally, Table 5 shows somewhat surprising results, as one would expect there to be 
relationships between different noise levels within the same nonlinearity model. 
 
4. Conclusions  

Change of a bit due to scattering in the received constellation could change e.g. 
coordinates of the target, which could be vital information. Figure 1 suggests that encoded 
words can be significantly altered. Therefore, the transmitted message can be 
misinterpreted. In our case, the participant (see the 3rd contribution in the Introduction) 
was employed in the military field. Hence, in his profession, the consequences could lead to 
influencing decisions in combat and consequently, since it is military communication, cost 
soldiers their lives. To further explore the issue and examine possible dependencies 
between the results of the models used, we performed an ANOVA analysis. Implications of 
existing dependencies could be that researchers will find a relation between them.  
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